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Cooperativity and spatial correlations near the glass transition: Computer simulation results
for hard spheres and disks
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We examine the dynamics of hard spheres and disks at high packing fractions in two and three dimensions,
modeling the simplest systems exhibiting a glass transition. As it is well known, cooperativity and dynamic
heterogeneity arise as central features when approaching the glass transition from the liquid phase, so an
understanding of their underlying physics is of great interest. Cooperativity implies a reduction of the effective
degrees of freedom, and we demonstrate a simple way of quantification in terms of the strength and the length
scale of dynamic correlations among different particles. These correlations are obtained for different dynamical
quantitiesX;(t) that are constructed from single-particle displacements during some observation @he
particular interest is the dependencetointerestingly, for appropriately chosefi(t) we obtain finite coop-
erativity in the limitt—oo.

PACS numbd(s): 64.70.Pf, 61.20.Lc

I. INTRODUCTION From correlators of the above type, we can obtain the
spatial extent as well as the overall, or mean, degree of co-
The remarkable features of glass-forming liquids, agreeaperativity in the system’s motion. In literature, one uses the
to presently, can widely be attributed to collective phenom-detour via Fourier space and the fitting of Orstein—Zernike
ena. We know that they become more and more important ifunctions to determine dynamical length scales. Throughout
we approach the glass-transition point. It is a great challengghe present work, however, we will stay in real space, which
to understand collective phenomena because we expect thegill ease the interpretation of our data.
to be a kind of universal origin of glassy behavior. We will present a treatment of the overall cooperativity
The goal of this paper is to introduce a way of quantifyingwhich, in contrast to existing work, makes possible a picto-
the degree of cooperativity by exploiting the correlations ofrial understanding of our results in terms of a reduction of
two-time, single-particle quantities. This will be done for degrees of freedom. An important point is the time sdale
two-dimensional(2d) and three-dimensional3d) systems defining the dynamical measurements. We hope to demon-
thus revealing their very similar behavior. Naturally, thesestrate, first, that dynamical length scales strongly depend on
correlations have a spatial aspect, which shall be examined and, second, that= 7, is not a sensible choice. Further-
in detail. In principle, the idea is not new, because a considmore we show that the reduction of the degrees of freedom is
erable amount of work has recently been done on this subjeefirectly related to the Haven ratio, well known to character-
[1-4]. Even an experimental determination of dynamicalize cooperativity effects for the ion dynamics in ion conduc-
length scales has become possible through multidimensiongrs[10].
nuclear magnetic resonan®6]. Interestingly, the theory of ~ The organization of the paper is as follows. Section Il
spin glasses makes predictions about the behavior of dygives details of the performed simulations and introduces the
namic susceptibilities and—connected to it—dynamicalmain dynamical features via common single-particle quanti-
length scales, when approaching the glass transitidn ties. Section IIl formulates our approach to quantify the sys-
Summing spatial correlations, the susceptibility shows a ditem’s overall cooperativity, which is well known to be the
vergence for the analyzed spin model near the modeintegral of spatial correlations. The latter are treated in Sec.
coupling critical temperatur@_ . There is some evidence 1V, obtaining their strength and length scale. We conclude by
that this divergence is present in structural glasses&c. a discussion of our results in Sec. V.
Up to now, the discussion of dynamical length scales has

mainly been focused on the mobility of particles, but not on Il. SIMULATION DETAILS
their direction of motion. Various versions of spatial correla- _
tors are in use, e.g(u(0t) u(R,t)), wherew(t) represents It is the advantage of a hard-sphéHS) system for com-

the length of the total displacement durifift], i.e., the  puter experiments, that the pair potential

mobility, se€[8]. As another example, one attributesut)

the value of one, if particléis slow, and zero otherwig@], Vi (r)= o, Mi<Ri+R

see Sec. lll. We will demonstrate, however, that the direc- A 0, otherwise

tional aspect of motion is crucial for interparticle correla-

tions, resulting, e.g., in a much stronger density dependenderbids certain regions of configurational space, so that

of dynamical length scales. Monte Carlo steps are simply denied when particle overlaps
occur. These computer-friendly “yes/no” decisions make a
Monte Carlo implementation of HS dynamics very efficient.
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takes the role of temperature, which is not a relevant control 107 10° 10 1ot 10° (1;;"1o° 10t 10t 10*
parameter here.

An important input parameter is the distribution of par-  FIG. 1. One-particle, two-time quantities for the 3d packing
ticle sizesR;, i.e., the polydispersity. It determines to a large fractions ¢34=50%, 53%, 56%, 57.3%, and 58%, from left to
extent, how amorphous the system is. For example, a bimaight. The system sizes ald~1000. (a) The mean squared dis-
dal mixture of spheres can be used to prevent crystallizatiomlacement (r?(t)) and (b) the incoherent scattering function
In this work, we use a continuous, Gaussian distribution of »(Kmax.t)-

width op and mean radiuéR;)=1, the latter serving as the . . .

unit of length. Particles ofR;,—1|>3op were not used, be- fgw percent of th_e mean particle rad|us._ Comparisons to
cause they Would Sslow dolwn the sFi’muIations very’muchs'mUIat'on runs with much smaller step sizes showed this
Former experiments show, that for 3d systems=10% is choice to be sensible because no deviations arose, except for

. . . a trivial shift of the time axis.
enough to obtain a stable amorphous state, i.e., lacking long- In the simulations analyzed in this paper, we used rela-

range ordef11]. In the two-dimensional caselisks, we tively large systems in order to prevent major finite size ef-

will work with op=25%. o
Although a HS system seems rather artificial at first sight{:ncésé;gobform%rs ?vl\algiljfilr%e\;\fiohnzﬁfszgr%sfzzz 83 ;gl
there is great interest in its properties, from both the theoret%jS, 0.77, and 0.78, which correspond to a box length of

ical and the experimental side. That, on the one hand, is du 00 mean particle diameters. In the three-dimensional case
to the unbeatable simplicity, and on the other hand to the fac P y '

that HSs are well represented by colloids in real life. Micro-vvs%;sgd'.\l: 1255422 and 1? 3;07d'part|(t:les 'f|II|ng r?c;{olu?e
scopically, colloidal particles perform free diffusion in their (50Ro)”, i.e., mean particie diameters in each direction.

solvent, which is one of the reasons why we have chosen -gh?l_ corrfsp?ndtw_]g VO'U”.‘e frafc?rc])ns a’fd:,o-%?’ and 056t .
Monte Carlo algorithm to generate the dynamics. Rather than 0 get a first impression of the system's dynamics, 1L 1S

: ; o most simple to calculate two-time, one-particle quantities.
integrating Newton’s==ma, we propagate the system ac- ’ ! )
cording to the Langevin equation They show the same strong dependence on packing fraction

as macroscopic transport quantities, like viscosity, when ap-
) proaching the glass transition. The mean squared displace-

[i=—aV(r{,.....) +m,
{r iV(ry N) T 7 ment

where white noisesy(t) are directly coupled to the par- 1
ticles’ positions For very short waiting times, there will (rz(t)>z<ﬁz (ri(t)—ri(O))2>
hardly be any collision, so the potential term in E8) can !
be2 neglected. The result is a free diffusion for-0, i.e., 504 the incoherent part of the scattering function at a given
(r<(t))~2dDqt, whered e{2,3} denotes the number of di- | 1ve vectork
mensions. All particles have equal masses, and their micro- '
scopic diffusion constan®, will be the same. Although this £ (k t):<£2 eik(ri(t)ri(O))>
kind of dynamics is convenient for simulations, the approach AR N <
via Newton's equationgmolecular dynamigswould lead to
quite similar results. Naturally, the trivial short-time motion are the most common examplee Fig. 1L The data shown
would be completely different from the Monte Carlo case,have been calculated in an earlier work, using small 3d sys-
but the relevant information for longer times is expected totems ofN~ 1000 particles. In the following, these data will
be insensitive to the microscopic dynamics. Recently, thigio longer be used. Interestingly, the one-particle quantities in
has been demonstrated for a Lennard-Jones type sy&&m Fig. 1 differ little from their counterparts in the largesys-

In a Monte Carlo step, we randomly choose a particle andems, i.e., for the analyzed packing fractiopg,=0.53 and
try to displace it with a random amoudk, whose distribu- 0.56. The relaxation times,, for instance, agree within
tion has the width\. Thus,\ is the typical step length. We 20% at ¢=0.56. Many-particle correlations, in contrast,
must take it as small as possible, because only in the limihave turned out to be very sensitive to system size. Simula-
A—0 are we sure of integrating E@2) correctly. On the tion runs for ¢33>0.56 with numbers of particlesN
other hand, too small a will reduce our simulation effi- >10000 are not available at the moment, but the densities
ciency extremely, because upon halving we need four ¢53=0.53 and 0.56 seem to produce all the interesting fea-
times as many steps to cover the same distance. As a corures of a cold glass-forming liquid.
promise, we try to achieve an acceptance rate of 50%, i.e., We want to emphasize at this point that the one-particle
half of the displacements should result in valid moves, thatuantities for the two-dimensional case look very similar to
is, producing no particle overlaps. Dependent on the packinig. 1, i.e., we find anomalous diffusion, as expressed by the
fraction, this yields values from=0.02 toA=0.05, i.e., a slope of(r?(t)), and a plateau in the scattering functieg,
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FIG. 2. Relaxation timest,(¢) and diffusion constants
D/Dy(¢) for 2d and 3d systems. The critical valugs are deter-
mined by a MCT fit of the diffusion constant, i.eR/Dy~ (¢,
— ) 7. The results arep. 33=58.7% andp. ,q=80.3%.

when going to high densitiegot shown here We can ex- FIG. 3. Particle motions;(t+507,) —r;(t) during a time 5@, .
tract from(r(t)) the ratioD/D,, of the long- and short-time The density isp=0.78 in a 2d system.

diffusion constants. It describes the slowing down of the par-

ticles’ long-distance motions upon increasiag The struc- lll. COOPERATIVE EFFECTS

tural relaxation timer,, is calculated according to the condi-
tion F,(k,7,)=1/e, where the wave vectork=Kyayx
corresponds to the next-neighbor distance. The increasing
and the decreasinD/D,, indicate a great change of the dy-
namics when approaching a critical valuegfs;=58.7% in
three andp; ,y=80.3% in two dimensionssee Fig. 2 We

Figure 3 suggests the fact that a liquid near its glass tran-
sition possesses highly nontrivial dynamidsee also
[16,17). We recognize regions of totally different behavior,
some of which show very crowded and uncooperative mo-
tions, while others seem to aa$ oneresulting in collective
; ' flows. The mobility obviously varies between different areas,
obtainede by a fit of D/Do(¢) to a power 1awD/Do(¢)  \yhich is commonly referred to adynamic heterogeneity
~(¢c—¢)"7 as predicted by mode coupling theol¥3]. oy can we quantify the degree of cooperativity in our sys-
The value of y3q=2.0-0.2 is close to the value of 2.46 om2 It is possible to do this by comparing the fluctuation of
predicted by this theory for a monodisperse system. Hows one-particle dynamic quantit; with its many-particle
ever, the exact value op. should not be overmterprgted equivalents, X, . For simplicity, let(X;)=0, which implies
because fits to a Vogel-Fulcher(VF) behavior (=X;)=0. We can think ofX; to be the displacement vector
D/Do(¢)exp(~C/(ec—¢)) work equally well in our range  x, —y,—r (t+t')—r,(t) or its relative lengthX;=dv;=v,
of densities, resulting ipyg 39=0.612 andpyg ,4=0.815. In —(v,), wherev;=|v;|. The direction of motiom:. =v.v.-L is
the future, it would be interesting to compare not only thea selnéible choace f(I)Xi , too. In the case Whertla intlerlparticle

relaxation time but also the whole relaxation function . A . L
. . o lat lack th th of th tribut f
F,(k,t) with the mode coupling theory predictions for poly- \(,:Vci)|r|rE: lons are lacking, the width of the distribution X

disperse HS systems.

In the case of a HS system, the reason for the reduction of
mobility at high ¢ is quite easy to understand. The particles Var
are tightly surrounded by the so calledgesof next neigh-
bors, which to a large degree restrict their motions. On av€orrelations, however, will increase \arx; ] while anticor-
erage, a particle feels a back-dragging force, which preventglations will do the opposite. From Fig. 3 it is reasonable to
its cage from being destroydd4,15. If we definexi(m)(e) expectcorrelations and we define
=r;j(t=me)—ri(t=me—e€) as the subsequent displace-
ments of a tagged particle, the back-dragging force results in 2 (XX))

> xiFE var X]. 4)

aG negative value of the correlatiopx®x(M). With the NEOOR Var ZX] 14 ] 5
reen—Kubo relation X SVarfX] S(X?)
M If our expectation is right, theN$ °Pwill be larger than one.
D=Do+ %N:";nx mzz 2 (EXM), @ deg\g/\rISers]oov:f(r:éaeig:J;? i?&::)dnl)?/asgrrr(eefa?;ng.)tlerlll trr(laed :iCrEBPe ?:];se

of uncorrelated motion (X;X;)=0), we obtainN{**P=1,
whereas the other extreme of totally correlated motign (
this immediately leads us to the conclusion that the so calledexj) results iNNS°"=N. If, more generally we havé/

cage effect is responsible for the slowing down of the mo-dentical variablesX; in each ofL independent groups)l

tion, as expressed Hy<D,. =ML, we obtain

On a longer time scale, the particles finally succeed in N M—1
leaving their cages. Naturally, this can only occur if the NCOOP— 1 4 1 E 2 (X-2>=M. 6)
neighbors rearrange in a collective way. x X
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FIG. 4. N$t) at densitypsy=0.56, for different numbers of
particles that are summed over ByX;. From bottom to topn
=20, 100, 500, 1000, 2000, and 4000. Time is normalized,to

These examples show thidf’°Pis indeed a reasonable quan-
titative measure for the degree of cooperativity. In real life,
correlations will not be perfect, i.e., 100%, and their
strengths and spatial extensions will vary throughout the sys-
tem. Hence, we should expebty’® to be an average or
effective reduction factor for the degrees of freedom. FIG. 5. [2d] NoRt) for n=2000 ate,q=0.73, 0.75, and 0.77.

It is important to note thalN$*®P=N§’°{t) because the [3d] The same for the 3d casegy=0.53 and 0.56. The statistical
dynamic quantitiesX;=X;(t) are dependent on the time error due to the finite simulation time BN§°(207,)=+0.5 for
scale necessary for their definition. The calculatioiNgi®®  ¢34=0.56. Again, time normalization by, .
turns out to be quite inconvenient. From one configuration,
we only get one data point for the tethX; in the numera- is not always the best thing to do. We can see the reason for
tor, i.e., N is not self-averaging. Thus, the simulation run this as in the examplX=v, takingn=N, i.e., all particles
has to be very long to aquire enough points for the calculaof the system. Then, VBEv;]=0 because the simulation
tion of the variance. A way around this obstacle is not to sunconserves the center of mass, which means it Eetsto
over the whole system, but only over local subsystems of zero. Fortunately, our systems are large enough, enabling us
particles. This should improve statistics. In practice, at &0 choose an optimum value ofjust between these two size
given n, we randomly choose a central particle and add theeffects. For a more thorough discussion see Fig. 7 and the
closest — 1) neighbors using them as a subsystem. Repeagorresponding text.
ing this procedure for a small number of other central par- A word about error bars. The statistical uncertainty of
ticles, we get some more subsystems of size simulation results is a consequence of the limited lefigtt

Naturally, a too smalh will modify our results because the runs. If we assume the equivalence of ensemble and time
we throw away some longer-ranged correlations, which ca@verage, a quantith can be determined up to the accuracy
be important. An illustration for that is given in Fig. 4, where Varf[A]~T %, where the constant of proportionality is es-
NP belonging toX; = sv;=v;—(v;) is plotted for different ~sentially the decay time of the autocorrelation function
n at densitypsq=0.56. We clearly see that it is necessary to{A(t)A(0)). We calculate Va{A] by extrapolating its be-
take as many as>1000 particles because a major Changehavior forT'<TtoT, i.e., the average over the whole simu-
can be found when decreasindrom there. Interestingly, we lation run. This is done foA=N3**{(t), only for a few ex-
obtained for a small system &f=1066, ¢34=0.56 only a amples oft. The resulting errorsN°P= = (Var N3>%7) 12
maximumN$°P of nine when usingy= 1066 for its calcula- ~are given in the figure captions.
tion (data not shown This is half of the value oN% at Figure 5 shows\y**P=N§°P for some densitie in two
N=16307,n=1000, thus proving large finite size effects in and three dimensions. As a function of tini¢})°° starts at
many-particle correlations for the small system. Being conshort times with the value of one because the individual
scious of this problem is especially important if one needsBrownian motions in the microscopic regime are uncorre-
trustable numerical values fa¥y’°°, e.g., for determining lated. This is a trivial statement, so we do not have to dem-
the exponent of divergence when cooling toward the glasenstrate it for every density. For later timeg; " reaches a
transition, as is done ifi9]. How is it possible thaN$°  maximum which strongly increases with density. The fol-
<20 in the casepsy=0.56 although the finite-size effects of lowing decay then takes some decades in time again. But as
a too small subsystenm can be sensed even up to can be seen, a limiting value is hard to observe within simu-
=10007? The reason is that particles are only partially correlation times.
lated, which will become clear in Sec. IV where we demon- Now, the behavior of 2d and 3d systems seems to be quite
strate the decay of correlations with interparticle distancesimilar, although the maximum values Nf;°" are larger in
Additionally, regions of fast particles are extended, noncom-2d. A small difference is the shift of the 2d maxima toward
pact objects(Fig. 3), so that we have to sum over larger longer times. While in 3d they are found at approximately
subsystems to include all their mobility correlations. 27,, we find them in the 2d case at around,4 This shift

On the other hand, however, takingas large as possible can be observed in other dynamical quantities as well. The

107210°' 1 10' 102 10°
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40 ] D/Dy) and find a somewhat higher cooperativity in 2d. The
NE*P(t) [2d] absolute values dfiy’°for the differentX agree to a reason-
30t E able extent, so that we are indeed allowed to interpret them
in the sense of a reduction factor for the degrees of freedom.
20k ; Let us now turn to the limiting valudly’’. Although we
find a random diffusion for every particle on a time scale
1ot t>r, as expressed by the diffusion lagw?(t))~Dt, we
should generally not expedty’°P to be one because the in-
0 terparticle correlations from shorter times are still accounted
for in this quantity. This can clearly be seen in the following
P way: We decompose the displacementfor t> 7, into M
pieces, each of them corresponding to a time step/M,
151 ie.,
M
10} Vi= 2 Alm, (7)
m=1
5 -
t/7 for particlei. For simplicity, let us say that interparticle cor-
Ot 0 ] relations are negligible for different time intervals, i.e.,
1072107" 1 10" 10?

(A{“A}”’)zo if m#m’. In this case, we obtain

FIG. 6. [2d] NS°°Rt) for n=2000 ate,q=0.73, 0.75, and 0.77.
[3d] The same for the 3d casegy=0.53 and 0.56n=2000(+).
Additionally, we see N°°Ht) (¢). The statistical error is
SONEPR107,)=+0.5 at ¢p33=0.56, and SN{°R507,)=+1.3 at
©2q=0.77, for example. Time is normalized by, .

MY (AlA})
NCOOR ) =1+ —— ®)

NM, (ab?

simple reason lies in the different polydispersitigs=0.1in  where we exploited time translational invariance, i.e., having
three andop=0.25 in two dimensions. In 2d, the small an equilibrium liquid. This quantity, however, does not de-
and—on average—fast particles calsgknay.t) to decay  pend on timet=Me anymore, ife is fixed. We thus get an
more quickly in the beginning, so we measure a systematigea how it is possible that correlations persist tfofoo.
cally smaller 7, than in the 3d case. If we defined  Finally, other choices oX; are possible, e.g., more exotic
Fo(Kmax,7)=0.01 instead of requiring=z(Kmax,7)=1/€,  quantities like
this discrepancy would vanish.

It is important to compare these results witif*°" deter-
mined by the dynamical quantitieé=v or X=n as men-
tioned above. For the interpretation of values\gf°?, this is
essential, because different sensible quantiXiehould not

produce totally different values &°°P. Figure 6 shows the where the exact definition dast and slow is of no impor-
caseX=v for 2d and 3d. anK=n for 3d. First NS°P ang tance as long as it is done in a sensible way. Such an analysis
. . Ny

NP clearly display their long-time limits, which are equal tlas bee_n presentgq _EQJ, for a Lennard-gé)oges fde_u_s_mg a
and different from one. Secontl-°°" still develops a maxi- “dynamic SL_JSCEpt'kéIOI:,%/ Xss instead o ™. Its definition
mum around = 7,, while N°°?is a monotonously increas- IS quite S“'m"ar tON" » Measuring fluctuations of _a many-
ing function. Table | summarizes the main results aboupart'de’ macroscopic” dynamic quantit@s=w; :

NP, We can compare the maximum values NP for
equivalent densitiege.g., equivalent in the sense of equal

1, slow
—1, fast (9)
0, otherwise,

Xi:WiE

\Y
Xss=%2‘[<Q§s>_<st>2]- (10

TABLE I. The main results aboutig>®. Unlike N$>°P, a quantitative interpretation of the value yafs
is not obvious.

| Dy Let us return to the role of the sizeof the subsystems
=2

D NgooP NEeoP Ngoop that are used for the calculation f’°’. As we stated
Sv,max \2 n,max X
above, the subsystem should be large enough to include most
®2d of the long-ranged correlations of its particles, i.e., to reduce
0.73 2.76 9 819 coop_
) surface effects. On the other hantsN leads toN;"""=0
0.75 3.41 12 13 because of the center-of-mass correlatiomo). It is evident
0.77 4.51 23 2% that our results will be influenced by the cmc even if we use
P n<N, sayn=0.9\. Despite this fact, we need a cmc be-
0.53 292 6.5 67y 8 cause the motion of the whole simulation box leads to un-
0.56 453 17 1469 21 physical results folN°P. Interestingly, the center of mass

(cm) performs a random walk with speedv?(t))
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increasingn only reducesN{°°® by the “trivial” factor of
(1—n/N). The choicen=2000 is marked by1 in Fig. 7.

In our case, at,q=0.77, we observe a maximum reduc-
tion of the total degrees of freedom by a factor {2,
=35. This, however, is yet only a moderately high density
(¢c24~0.8), so we should expect large collective effects at
the glass transition.

Finally we mention an interesting relation betwee{f?"
/N and the Haven ratio, relating the ratio of the self-diffusion
0.0 0.2 04 06 08 1.0 constant and the conductivity in ionically conducting mate-
rials. Its zero-frequency limiH(0) is given by

0 A

FIG. 7. The role of the subsystem simein the calculation of
NyoP (+), for the systemsp,q=77% (N=9201) andezy=55%
(N=16307). The solid lines are fits of the formyen(1 Z Sodt{v;(0)vi(t))

—(n/N)), where the parametéd;5°=35 and 16.5, in the 2d and H(0)= : (13)
3d case, respectively. Thé marks the choicen=2000. 1 " '
N & Jodtv(0v()

=1/N2dDgt, independent of the packing fraction, which is

the consequence aictio=reactio in a stochastic sense. Since for large times  (vi(t))=2dDt
Now, the subtle point is that the cm motion consists of two=2t[Zdt(v;(0)v;(t)) and correspondingly (v;(t)v;(t))
contributions, first the random displaceméhbf the simu- =2tf5dt(v;(0)v;(1)), it is obvious that

lation box as a whole, which would vanish if we embedded

the simulation box in macroscopic system. Second, the ran- NSOP=H(0) ™. (14)

dom rearrangements; of particles in our system that pro-

duce a contribution to the cm motion even if we forbid anHence, as a side product we have obtained a quantitative
overall drift of the box. Obviously, we should keep the sec-interpretation of the inverse Haven ratio as the reduction of
ond and discard the first contribution because the latter is athe effective degrees of freedom.

artifact of the limited system size. A cmc, however, will

remove both. In the following, we estimate the resulting er- IV. SPATIAL CORRELATIONS

ror in the calculation oNS°°®. The uncorrected displacement o

of particlei is v,=w;+U, so that the cm motion becomes  The snapshot of the dynamics in @ig. 3) demonstrates
Ven= 1/NEE= We+U, where the first term generally does that large spatial correlations are present in our systems. In

not vanish. Calculating the numerator§®®in Eq. (5), we t_he following, we want to quantify them as a function of the
time scale of dynamics.

obtain ) . .
As in the treatment oN$>°", a dynamical variablex;
h should be given for each particle, again with the restriction
> (V= Vem) (V= Ver)) (X;)=0. A spatial correlator can then be defined by
if=1

1

. 1 2 N <X(0)X(R)>E<—Z XiX;5(R—(ri—r1))>- (15

=> ((Win>+m > <WkWI>_NE (Wiwie) N
ij=1 kl=1 k=1
N Again, X; denotes a dynamical quantity connected to the
_ E (wwd| 1— n (1) motion of particlei during the time intervalty,ty+t]. Be-
_ij:1 ™ N/’ cause of symmetry reasons, the positiofisr;(ty+t/2) are
used. Averaging over the solid angle Rf i.e.,

where, in the final step, correlations betweenliia differ- 1
ent subsystems have been neglected. Thus, =
Y g (X(0)X(R)) 477_sz dQ(X(0)X(R)) (16

(12) results in a loss of information because the direction of mo-
tion of particlei, for example, breaks the isotropy. Figure 8
explains this in a pictorial way: particles “in front of” or

is the result, which is too small by a factor @— (n/N)). “behind” the central one have a very long-ranged direc-

As is demonstrated in Fig. 7 for the value M{°°{), this  tional correlation, while perpendicular to the direction of mo-

behavior can indeed be observed in our simulations. Th&on, we observe a kind of backflow behavior which is well

renormalized value of cooperativitly<°®, comes out as a known from[18]. How has this plot been produced? First,
fit parameter to the form of Eq12) (sée Table 1 in brack- We calculate alX;=n;, i.e., the directions of displacements
ets. Additionally, Fig. 7 tells us what choice of is advis- during a time interva[to;to+t]. We then choose particie
able because/N has to be in a region where the above fitand turn the wholé2d) system so thak{ points along the
works. If this is the case, the subsystem must have only smajiositive x axis. Now, the directions(j’ are added to the av-
remaining correlations with the othBr—n particles because erage at the position#(t0+(t/2)). As result, we obtain the

n
A
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10°

107"k

1072

1073¢%

FIG. 8. Correlations of the direction of displacemeKis-n; at 0
¢=77%;t=10r,. The large arrow in the middle shows the direc- 10 3
tion of motion of the reference particle. Eo3

field (X'(r")), which for largelr’| consists of very short 107"
vectors. Hence, for reasons of visualization, we plotrtbe
malizedversion of(X'(r")) in Fig. 8.

Being aware of the complicated behavior in Fig. 8, let us 1072L
for the moment and for simplicity ignore the angle depen- — 12T,
dence, and treat correlations only as a function of interpar- — 50T
ticle distanceR. We define the dimensionless quantity 1073k “ R
(X(0)X(R)) 0 5 10 15 20 25 30
Sx(Rt)= TX%0)) (17
FIG. 10. Spatial correlatioB,(R,t) at ¢,q=77%.
where again its dependence on time s¢akould be kept in _ .
mind, just as in the case MN°°P. Possible choices aré; CalculatingSy(R,t), we encounter a problem that is re-
=8v;, X;=v;, or X;=n;, wherev,=r;(t)—r,(0), sv;=v; lated to the system size. If we want the system’s cm to be

—(v;), andm=vu; 1. The functionsS,,(R,t) andS,(R,t)  constant, we have to correct the particles’ motions. But this

count correlations of both slow and fast particles becaus&lroduces an anticorrelation of two formerly uncorrelated
both sorts are weighted similarly. To be more precise, th@articles. As a consequencgy(R,t) will approach a nega-
slow particles are not suppressed as in the cask(@,t). tive value for largeR, instead of zero. Without cm correc-

o N 10°F7]
107} 107!}
1072
107%¢

1073

1073 ¢ 1074k

° T
' ot b T SeRY) _
107! _ A
| N Bhaaton ¢=56%
1072 ]
107 ; — 47?% X
O : 10_3;:—-157, ' ,w‘i‘,( g
r — 507, TR
1073 , . -y ‘ g |
0 5 10 15 20 5 . P

FIG. 9. Spatial correlatioss,(R,t) at ¢,q=73%. FIG. 11. Spatial correlatioBs,(R,t) at ¢33=56%.
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TABLE II. The lengths of the simulation runs including the (rememberR;)=1) which on average are much faster than

number of particles. the others. Thug,6v(0)dv(R)) will be quite large. The os-
cillations for R<6 must have a similar reason, i.e., special
Pad 0.73 0.75 0.77 0.78 local packings that are favorable or not for the value of
#r, 2000 5000 5000 500 (_éy.(O)év(R)y. We can imagine that for largé, the possi-
N 8756 8960 9201 9320 bilities of packing become S0 many 'ghat they aver8geR)
to a structureless exponential. This is the case for the struc-
®3d 0.53 0.56 ture factorg(R), too.
0 1500 750 _Figure 11 show§{5v(R,t) for the 3d case. The situation i_s
a quite the same as in 2d, except for the long-range oscilla-
N 15422 16307

tion, we would measure a positive number in this limit be-
cause the cm performs a slow diffusive motigee Sec. Il
For the present systems, these offsets were smaller th
0.002, which is a small fraction of the amplitude of correla-
tion. Hence, their subtraction fro®(R,t) left the function
nearly unchanged.

Figures 9 and 10 sho®,(R,t) for the 2d systems,q
=73% andg,4=0.77. ObviouslyS;,(R,t) can be described
by an exponential

R
S&)(R,t)%A(t)eX[{ - ggv(t)) (18)

to a good approximation, R>5. It is important to note that
the amplitudeA(t) is not necessarily equal to one as sug-
gested by the definition @y(R,t) for R— 0. In other words,
the extrapolation of complicated interparticle correlations to
the one-particle quantit$y(R=0,t) would be unphysical.

We find large deviations from the exponential at distances
R<5. This can be understood qualitatively because certain
information about the local packing is available. For in-
stance,R<1 can only occur for two very small particles

100?' ' ' ' ' '

107"k

o3kl 0 R
0O 5 10 15 20 25 30

100 F T T

10~!

102

0O 5 10 1520 25 30 35 40

10°
107"

1072

1073

10™*
10°
107!

1072

1073F

10°F

1072

1073

FIG. 13.

FIG. 12. Spatial correlatio8,(R,t) at ¢,q=77%. =56%.

10_1 3 el

tions, especially o5;,(R,t=7,). They too indicate the ex-
istence of structures that are favorable for dynamical corre-
lations. For 2d systems of smaller polydispersity=10%,
which are not shown here, we find the same oscillations. In

is case, they could be proved to result from local crystal-
Ine order, which occurs, if—by coincidence—many par-
ticles of approximately the same size come together. Al-
though the system is in an overall amorphous state, the small
polydispersity makes local crystallites more probable, thus
creating regions of low mobility. The oscillations for three
dimensions, however, are not understood yet.

L L \ 1 ‘1 o
0O 5 10 15 20 25 30
Spatial correlationS,(R;t) and S,(R;t) at ¢zq
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iy g § TABLE lll. The dynamical length scales in the linit>oo.
10} £ LA A P34 0.53 0.56
sl [2d] 1 £2,(%) 22 2.8
: £() 23 45
6 T fv(oo) - 4.6
ol //Wj’;—‘ ] ©ad 0.73 0.75 0.77 0.78
/77 E5() 4.1 5.2 6.0 7.2
2t . e En() 3.7 5.4 11 16
107! 1 10" 10? &,() 4 - 10.5 16
5 3 Reun(*) 8 10 21 30
afb &M : . . . :
[3d] of all, we notice an increase of correlation lengths with den-
sity. For a 3d Lennard-Jones systéfr] and polymerq2],
3F 1 this has already been demonstrated for the special choice of
time scalet~ r,. But for longer times, even larger correla-
2t 1 tion lengths can be observed as shown in the figure. Interest-
ingly, &x(t) is a monotonously increasing function, with a
{ t/r. limiting value &x(e°)=lim,_,., &x(t). For comparison, Fig.

16_2 16_, 1 {01 1‘02 14 shows the length scales for the directional correlation
&n(1) at ¢,4=0.77 andgpz4=0.56.

FIG. 14. [2d] The dynamical length scales;,(t) at packing Table Ill summarizes the data f@y(>), where the error
fractionsg,q=73%, 75%, 77%, and 78%, from bottom to top). due to fitting the exponential is less than 10%he quantity
For comparisonz,(t) () and 3 Rey(t) (O) at @oq=77%. [3d] Reur Will be explained below. The statistical error due to
Again &, (1) for the 3d densitieg;q=53% and 56%+) and&,(t) finite time averages is small enough to be included therein.
at p39=56% (). Errors due to fitting are estimated to be less thanAs we see, the length scafg;, () takes a snuggish rise,
10%. growing from 4.1 to 7.15 betweeq,3=0.73 and 0.77. In

contrast,&, and §,(«), starting from about the same initial

In any event, we can extract froB, (R,t) the amplitude Value, end up at a value of more than twigg (). The
A(t) and the correlation lengtlis,(t) as a function of the underlymg_physws of thl_s very different beha\_/lor of mobility
dynamic time scalé. The simulation runs, by the way, have and directional f:orrelatlo.r? is unclear. As in the case of
to be much longer than the maximum time scale shown belx . the vectorial quantities; andv; show a very similar
cause the functionS,(R,t) are quite demanding with re- Pehavior of their interparticle correlators. o
spect to statistics. For instance, distant particles, which are SO we can state that the overall cooperativity is deter-
uncorrelated, have to averad¥(0)X(R)) to zero. The sta- Mined by both its length scali(t) and its strength, or am-
tistics M enters by a factor of 1/M, so an improvement of Plitude A(t). Equations(5) and(17) show that
the result has a high price. Additionally, tdgnamic hetero-

geneities as visualized in Fig. 3, are very long livgd9], E (XiX;)
i.e., possess typical lifetimes of tens to hundreds pf de- NGO 1 4 i#]

pendent one. Thus, if we want to average over different X = z(xf)
dynamical situations, we need data for some hundreds of

Table 1l shows the lengths of our simulation runs in units of _ 1 2 (XX
7, for the analyzed 2d and 3d packing fractions, respec- (X&) 47

tively, including the system sizH. L
Let us turn to another dynamical quanti¥=n;, the _ *
direction of displacement. As we see in Fig. B(R,t) is -~ (X%0)) fo dR pRY(X(0)X(R))
quite similar toS;,(R,t), i.e., we find an overall exponential
decay of correlations with distancB. Its characteristic [
length &,(t), however, is much larger than the previous _fo dR p(R)Sx(R), (19
&5,(1). Again, the situation is quite the same in three dimen-
sions(Fig. 13, i.e., &, exeedst;, for ¢34=0.56. A remark- wherep(R) is the average number of particles found at dis-
able difference to the 2d case are the extreme oscillations d&nceR from a particle at the origin. In a way, this is a trivial
Sy(R,t) for t=(1/75)7,. This is not understood yet, but result because the sum over all spatial correlations should be
could be due to the lower polydispersity in the 3d systermthe overall cooperativity. When the approximati&q(R)
causing locally less amorphous packings. The vectorial cor=Ae ®¢ is valid and at homogeneous density, we find
relationS,(R,t) is also shown in Fig. 13, where it seems thatN°{(t) ~ éx(t)3A(t). The deviations from the exponential
the amplitudeA, (t) is a constant for all time scalés 7, . for small R can modify this argument but are unlikely to
Figure 14 summarizes the data #y(t), X;=4dv;. First totally change the picture.
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100 T T : T T ] TABLE IV. The anisotropy of dynamical length scales.
o] 0.56 0.77
10 LR &n () 2.7 7.5
‘ &El(=) 4.4 15

-2
1077 dicular to the motion of the central one is justified for three-

as well as for two-dimensional systems.

The time dependendg(t), if at first sight surprising, can
be understood quite pictorially. Without any further informa-
tion, the probability for the motion of some tagged particle
s s S is equal in every direction. However, if we know that, in the
] meanwhile, one or more of its next neighbors perform some
specified displacements, this will influence the probability of
movement of the tagged particle. More distant neighbors will
do this as well, but the information about their motions has
to be “submitted” to particle via nearer neighbors. It is not
hard to imagine that the information spread can only take
place with a finite velocity. Thus, short-time motions will be
accompanied by a reaction of a few neighbors, while long-
lasting displacements will involve many of them. The mo-
10-2E o | AR nhotonousl)ll growing length scale of dynamic correlations is

the natural consequence.
0 5 10152025 30 35 40 In the limit t—co, we can argue as in the caseN§°":

FIG. 15. Spatial correlatioB,(R,t) at ¢,q=77%,t=10r, and  For long waiting times, the displacementg=r;(t/2)
©34=56%, t=17,, calculated dependent on the anghe=(v;.r; —r;(0) and w;=r;(t)—r;(t/2) become independent to a
—r;). Parallel () meansy e [0,m/20]U[ 22 m, 7], perpendicular good approximation. Thus, corre[atlons on time sdab@n
(L) meansy e[ w/3,2m/3], and bulk stands fope[0,7]. In the ~ be expressed through andw;, usingv;=u;+w,

erpendicular cas&,(R,t) becomes zero &#~R,, and is nega-
'Ei)vepfor larger distﬁ((:es,)so that it is necessar;utrl) plot its a%solute (V(0)V(R))=(u(0)u(R))" +(w(0)w(R))". (20
value.

1073

10_15"

This results in

Consequently, the results fof3°{t) and &, (t) are only 1 t 1 t
compatible, if the strength of correlatiagkg, (t) will tend to Si(R,t)= ES@( R, > + Es(j( R, 5)' (21
zero for long times. We can observe the decreasg pft)

clearly in Fig. 9 (¢=0.73), but it is harder to see at higher The primed and double primed versionsRfR,t), respec-

densities because of the limited time window. BprVv;, in  tjvely, denote measuring the distandest the end or at the

contrast, we need a limiting value &%, greater than zero, if beginning of the time interva]Ot]. On the other hand,

S/(Rt) is to be compatible wittNy*t) for t—o. Figure g (Rt) is defined by using the interparticle distariRén the

13 proves this to be the case becadgét) is constant for  middle of this interval. However, the definitior,(R,t),

t>7,. S/ (R,t), andS/(R,t) produced the same results in our simu-
Let us finally return to the detailed picture of Fig. 8. It |ations, which is not shown here. Thus, in the long-time

suggests that spatial correlatioalong the direction of mo- |imit, the spatial correlations of the vectorial displacements
tion will be very different from thenperpendicularto it. We  x.—y. pecome time-independent, i.e.,

can test this by restricting the summation in Etf) to cer-

tain anglesy between the motion of particleand the con- t

nection vectorr;—r;. For example, the conditiony S/(th)”&( R, 5)- (22)

e[ #/3,27/3] chooses only particlesthat arecollateral to

particlei with respect to its motion; . To selectin direction The phenomenon of a growing dynamical length scale is

of motion, we demandye[0,m/20]U[%2 7, 7], for ex-  exhibited by much simpler systems, like a one-dimensional
ample. The restricted sum is then carried out to obtairfclosed chain of N diffusive particles which are connected
SH(Rt) or S‘,‘1(R,t) (see Fig. 15 Because of the backflow, by harmonic springs, as described by the Langevin equation

we expeciS'rﬂ(R,t) to become negative for large>20. This
can be observed in the figure. In contraSE,(R,t) ap-
proaches zero foR— . We notice the difference of length where ther, are independent white noises. Let us assume
scalesé&: and &), which is summarized in Table IV. The thatNis a large number, say>1000. The analytic solution
estimated error of these length scales is less than 20%, bof this many-particle problem is possible with the help of
the exact values are not of interest here. Instead, the notiatiscrete Fourier transform. This enables us to calculate the
of a very different behavior of particles parallel and perpen-displacement—displacement correlation, but this is not shown

Xn= —K(2X,=Xn-1=Xn+ 1) + 75 (23
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here. The result is that in this simple model, the length ofreduced dimensionality of motion in high-dimensional con-
correlation increases with time, too. In contrast to our simufiguration space. The length scale of correlations, however,
lations, &,(t) grows until it has reached the system size.turns out to increase much faster with density Xp#=n; and
Mathematically, this is explained by the fact that relaxationyv; than forX;= év;. An explanation for this is lacking at the
times are largest for the long-wavelength modes. Stated difmoment. Finally, we demonstrated, that for 2d as well as for
ferently, apart from finite size effects the chain model pos-3d systems, an angle-resolved calculation of correlations is
sesseg, (°)=00. In turn, we suspect the reason for a finite appropriate, yielding much larger length scaileshe direc-
value oféy () in our HS systems to be the following: “par- tion of motion thanperpendicularto it.
ticles simply can go out of each other's way.” The important question arises how the dynamical length
In other words, a patrticle that travels a long distance doescaleséx() are connected to static correlations. In other
not have to pull the whole system with it because rearrangewords, which local structural properties determine whether a
ments are possible by changing neighbors. On average, thigoup of particles will be fast or slow? Naive attempts, us-
results in the backflow behavior of Fig. 8. We are thereforeing, e.g., spatial density correlations, have not revealed any
tempted to relate the length scalég() to an inherent significant connection to dynamics. What makes things more
length of the backflow pattern for long times. From Fig. 8, complicated is¢x(t)’s dependence on the definition Xf .
we see that the distand®,(t) from the vortices to the On the other hand\$*°}(t) and Sx(R;t) are strongly aver-
central particle is the only sensible choice. Table Il showsaged quantities, obtained by including many different dy-
the limiting valuesR. (%) for the 2d systems under inves- namical situations. Thus, we should not expect to get very
tigation. InterestinglyR.,(°) is twice the correlation length specific information from them. A deeper understanding of
&y() or &,. For &, (), no such relation seems to exist. cooperative effects will only become possible by a more de-
tailed, less averaged treatment. In any case, the relation of
V. DISCUSSION structure to dynamics is the central problem to be solved.

) . ) ) The present work may help to formulate the relevant ques-
We presented detailed information about displacemengons somewhat clearer.

correlations, which turned out to be of the same nature for
two-dimensional disks and three-dimensional hard spheres.

Using the quantitiesX;=dv;, n; and v; as input for
N3PRt) and Sy(R,t), we were able to measure the total We gratefully acknowledge helpful discussions with K.
reduction of degrees of freedom and the spatial extent oBinder, S. Biehner, M. Fuchs, J. Qian, B. Roling, and H. W.
correlations, respectively. The dataN§’°?is found to agree ~ Spiess. This work was supported by the DFGrant No.
for these three choices of;, supporting the notion of a SFB 263 and the Fonds der Chemischen Industrie.

ACKNOWLEDGMENTS

[1] P. H. Poole, C. Donati, and S. C. Glotzer, Physic264, 51 [10] P. Maass, M. Meyer, and A. Bunde, Phys. Rev5B 8164

(1998. (1995.

[2] C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzef11] I. Moriguchi, K. Kawasaki, and T. Kawakatsu, J. Phys3]I
Nature(London 399, 246 (1999. 1179(1993.

[3] C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J.[12] T. Gleim, W. Kob, and K. Binder, Phys. Rev. Le&l, 4404
Plimpton, Phys. Rev. B0, 3107(1999. (1998.

[4] R. Yamamoto and A. Onuki, Phys. Rev.3B, 3515(1998. [13] M. Fuchs, W. Gtee, and M. R. Mayr, Phys. Rev. &3, 3384

[5] U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, (1998.
and H. W. Spiess, Phys. Rev. Le#tl, 2727(1998. [14] B. Doliwa and A. Heuer, Phys. Rev. Le&0, 4915(1998.

[6] U. Tracht, H. Wilhelm, A. Heuer, and H. W. Spiess, J. Mater. [15] B. Doliwa and A. Heuer, J. Phys.: Condens. Maftér A277
Res.140 460(1999. (1999.

[7] S. Franz, C. Donati, G. Parisi, and S. C. Glotzer, Philos. Mag[16] F. Kolbe, Diploma thesis, University of Konstanz, 19a8-
B 79, 1827(1999. published.

[8] C. Donati, S. C. Glotzer, and P. H. Poole, Phys. Rev. 18%t. [17] D. N. Perera and P. Harrowell, Phys. Rev5& 5721(1999.
5064 (1999. [18] B. J. Alder and T. E. Wainwright, Phys. Rev. 1 18 (1970.

[9] S. C. Glotzer, V. N. Novikov, and T. B. Schroder, J. Chem. [19] G. Johnson, A. I. Mel'cuk, H. Gould, W. Klein, and R. D.
Phys.112 509 (2000. Mountain, Phys. Rev. 57, 5707(1998.



