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Cooperativity and spatial correlations near the glass transition: Computer simulation results
for hard spheres and disks

B. Doliwa* and A. Heuer
Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, D-55021 Mainz, Germany

~Received 29 December 1999!

We examine the dynamics of hard spheres and disks at high packing fractions in two and three dimensions,
modeling the simplest systems exhibiting a glass transition. As it is well known, cooperativity and dynamic
heterogeneity arise as central features when approaching the glass transition from the liquid phase, so an
understanding of their underlying physics is of great interest. Cooperativity implies a reduction of the effective
degrees of freedom, and we demonstrate a simple way of quantification in terms of the strength and the length
scale of dynamic correlations among different particles. These correlations are obtained for different dynamical
quantitiesXi(t) that are constructed from single-particle displacements during some observation timet. Of
particular interest is the dependence ont. Interestingly, for appropriately chosenXi(t) we obtain finite coop-
erativity in the limit t→`.

PACS number~s!: 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

The remarkable features of glass-forming liquids, agre
to presently, can widely be attributed to collective pheno
ena. We know that they become more and more importa
we approach the glass-transition point. It is a great challe
to understand collective phenomena because we expect
to be a kind of universal origin of glassy behavior.

The goal of this paper is to introduce a way of quantifyi
the degree of cooperativity by exploiting the correlations
two-time, single-particle quantities. This will be done f
two-dimensional~2d! and three-dimensional~3d! systems
thus revealing their very similar behavior. Naturally, the
correlations have a spatial aspect, which shall be exam
in detail. In principle, the idea is not new, because a con
erable amount of work has recently been done on this sub
@1–4#. Even an experimental determination of dynamic
length scales has become possible through multidimensi
nuclear magnetic resonance@5,6#. Interestingly, the theory o
spin glasses makes predictions about the behavior of
namic susceptibilities and—connected to it—dynami
length scales, when approaching the glass transition@7#.
Summing spatial correlations, the susceptibility shows a
vergence for the analyzed spin model near the mo
coupling critical temperatureTc

1 . There is some evidenc
that this divergence is present in structural glasses too@8,9#.

Up to now, the discussion of dynamical length scales
mainly been focused on the mobility of particles, but not
their direction of motion. Various versions of spatial corre
tors are in use, e.g.,^m(0,t)m(R,t)&, wherem i(t) represents
the length of the total displacement during@0,t#, i.e., the
mobility, see@8#. As another example, one attributes tom i(t)
the value of one, if particlei is slow, and zero otherwise@9#,
see Sec. III. We will demonstrate, however, that the dir
tional aspect of motion is crucial for interparticle correl
tions, resulting, e.g., in a much stronger density depende
of dynamical length scales.

*Electronic address: doliwa@mpip-mainz.mpg.de
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From correlators of the above type, we can obtain
spatial extent as well as the overall, or mean, degree of
operativity in the system’s motion. In literature, one uses
detour via Fourier space and the fitting of Orstein–Zern
functions to determine dynamical length scales. Through
the present work, however, we will stay in real space, wh
will ease the interpretation of our data.

We will present a treatment of the overall cooperativ
which, in contrast to existing work, makes possible a pic
rial understanding of our results in terms of a reduction
degrees of freedom. An important point is the time scalt
defining the dynamical measurements. We hope to dem
strate, first, that dynamical length scales strongly depend
t, and, second, thatt5ta is not a sensible choice. Furthe
more we show that the reduction of the degrees of freedom
directly related to the Haven ratio, well known to charact
ize cooperativity effects for the ion dynamics in ion condu
tors @10#.

The organization of the paper is as follows. Section
gives details of the performed simulations and introduces
main dynamical features via common single-particle qua
ties. Section III formulates our approach to quantify the s
tem’s overall cooperativity, which is well known to be th
integral of spatial correlations. The latter are treated in S
IV, obtaining their strength and length scale. We conclude
a discussion of our results in Sec. V.

II. SIMULATION DETAILS

It is the advantage of a hard-sphere~HS! system for com-
puter experiments, that the pair potential

Vi j ~r i j !5H `, r i j ,Ri1Rj

0, otherwise
~1!

forbids certain regions of configurational space, so t
Monte Carlo steps are simply denied when particle overl
occur. These computer-friendly ‘‘yes/no’’ decisions make
Monte Carlo implementation of HS dynamics very efficien
The volume fraction
6898 ©2000 The American Physical Society
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w3d[
1

V (
4

3
p Ri

3, for d53

or

w2d[
1

V ( pRi
2, for d52

takes the role of temperature, which is not a relevant con
parameter here.

An important input parameter is the distribution of pa
ticle sizesRi , i.e., the polydispersity. It determines to a lar
extent, how amorphous the system is. For example, a bi
dal mixture of spheres can be used to prevent crystallizat
In this work, we use a continuous, Gaussian distribution
width sP and mean radiuŝRi&51, the latter serving as th
unit of length. Particles ofuRi21u.3sP were not used, be
cause they would slow down the simulations very mu
Former experiments show, that for 3d systems,sP510% is
enough to obtain a stable amorphous state, i.e., lacking lo
range order@11#. In the two-dimensional case~disks!, we
will work with sP525%.

Although a HS system seems rather artificial at first sig
there is great interest in its properties, from both the theo
ical and the experimental side. That, on the one hand, is
to the unbeatable simplicity, and on the other hand to the
that HSs are well represented by colloids in real life. Micr
scopically, colloidal particles perform free diffusion in the
solvent, which is one of the reasons why we have chose
Monte Carlo algorithm to generate the dynamics. Rather t
integrating Newton’sF5ma, we propagate the system a
cording to the Langevin equation

z ṙ i52] iV~r1 ,...,rN!1hi , ~2!

where white noiseshi(t) are directly coupled to the par
ticles’ positions. For very short waiting timest, there will
hardly be any collision, so the potential term in Eq.~2! can
be neglected. The result is a free diffusion fort→0, i.e.,
^r 2(t)&'2dD0t, wheredP$2,3% denotes the number of di
mensions. All particles have equal masses, and their mi
scopic diffusion constantsD0 will be the same. Although this
kind of dynamics is convenient for simulations, the approa
via Newton’s equations~molecular dynamics! would lead to
quite similar results. Naturally, the trivial short-time motio
would be completely different from the Monte Carlo cas
but the relevant information for longer times is expected
be insensitive to the microscopic dynamics. Recently,
has been demonstrated for a Lennard-Jones type system@12#.

In a Monte Carlo step, we randomly choose a particle a
try to displace it with a random amountdx, whose distribu-
tion has the widthl. Thus,l is the typical step length. We
must take it as small as possible, because only in the l
l→0 are we sure of integrating Eq.~2! correctly. On the
other hand, too small al will reduce our simulation effi-
ciency extremely, because upon halvingl, we need four
times as many steps to cover the same distance. As a c
promise, we try to achieve an acceptance rate of 50%,
half of the displacements should result in valid moves, t
is, producing no particle overlaps. Dependent on the pack
fraction, this yields values froml50.02 tol50.05, i.e., a
ol
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few percent of the mean particle radius. Comparisons
simulation runs with much smaller step sizes showed
choice to be sensible because no deviations arose, excep
a trivial shift of the time axis.

In the simulations analyzed in this paper, we used re
tively large systems in order to prevent major finite size
fects. To be more specific, we haveN58756, 8960, 9201,
and 9320 for the two-dimensional systems atw2d50.73,
0.75, 0.77, and 0.78, which correspond to a box length
100 mean particle diameters. In the three-dimensional c
we usedN515 422 and 16 307 particles filling a volum
(50R0)3, i.e., 25 mean particle diameters in each directio
The corresponding volume fractions arew3d50.53 and 0.56.

To get a first impression of the system’s dynamics, it
most simple to calculate two-time, one-particle quantiti
They show the same strong dependence on packing frac
as macroscopic transport quantities, like viscosity, when
proaching the glass transition. The mean squared displ
ment

^r 2~ t !&[K 1

N (
i

„r i~ t !2r i~0!…2L
and the incoherent part of the scattering function at a gi
wave vectork,

F2~k,t !5K 1

N (
i

eik„r i ~ t !2r i ~0!…L
are the most common examples~see Fig. 1!. The data shown
have been calculated in an earlier work, using small 3d s
tems ofN'1000 particles. In the following, these data w
no longer be used. Interestingly, the one-particle quantitie
Fig. 1 differ little from their counterparts in the largeN sys-
tems, i.e., for the analyzed packing fractionsw3d50.53 and
0.56. The relaxation timesta , for instance, agree within
20% at w50.56. Many-particle correlations, in contras
have turned out to be very sensitive to system size. Sim
tion runs for w3d.0.56 with numbers of particlesN
.10 000 are not available at the moment, but the densi
w3d50.53 and 0.56 seem to produce all the interesting f
tures of a cold glass-forming liquid.

We want to emphasize at this point that the one-part
quantities for the two-dimensional case look very similar
Fig. 1, i.e., we find anomalous diffusion, as expressed by
slope of^r 2(t)&, and a plateau in the scattering functionF2 ,

FIG. 1. One-particle, two-time quantities for the 3d packi
fractions w3d550%, 53%, 56%, 57.3%, and 58%, from left t
right. The system sizes areN'1000. ~a! The mean squared dis
placement ^r 2(t)& and ~b! the incoherent scattering functio
F2(kmax,t).
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6900 PRE 61B. DOLIWA AND A. HEUER
when going to high densities~not shown here!. We can ex-
tract from^r 2(t)& the ratioD/D0 of the long- and short-time
diffusion constants. It describes the slowing down of the p
ticles’ long-distance motions upon increasingw. The struc-
tural relaxation timeta is calculated according to the cond
tion F2(k,ta)51/e, where the wave vectork5kmax
corresponds to the next-neighbor distance. The increasinta
and the decreasingD/D0 indicate a great change of the d
namics when approaching a critical value ofwc,3d558.7% in
three andwc,2d580.3% in two dimensions~see Fig. 2!. We
obtainedwc by a fit of D/D0(w) to a power lawD/D0(w)
;(wc2w)2g as predicted by mode coupling theory@13#.
The value ofg3d52.060.2 is close to the value of 2.4
predicted by this theory for a monodisperse system. Ho
ever, the exact value ofwc should not be overinterprete
because fits to a Vogel-Fulcher~VF! behavior
D/D0(w)exp„2C/(wc2w)… work equally well in our range
of densities, resulting inwVF,3d50.612 andwVF,2d50.815. In
the future, it would be interesting to compare not only t
relaxation time but also the whole relaxation functi
F2(k,t) with the mode coupling theory predictions for pol
disperse HS systems.

In the case of a HS system, the reason for the reductio
mobility at highw is quite easy to understand. The particl
are tightly surrounded by the so calledcagesof next neigh-
bors, which to a large degree restrict their motions. On
erage, a particle feels a back-dragging force, which prev
its cage from being destroyed@14,15#. If we definexi

(m)(e)
[r i(t5me)2r i(t5me2e) as the subsequent displac
ments of a tagged particle, the back-dragging force result
a negative value of the correlation̂x(1)x(m)&. With the
Green–Kubo relation

D5D01
1

ed
lim

M→`
(

m52

M

^x~1!x~m!&, ~3!

this immediately leads us to the conclusion that the so ca
cage effect is responsible for the slowing down of the m
tion, as expressed byD,D0 .

On a longer time scale, the particles finally succeed
leaving their cages. Naturally, this can only occur if t
neighbors rearrange in a collective way.

FIG. 2. Relaxation timesta(w) and diffusion constants
D/D0(w) for 2d and 3d systems. The critical valueswc are deter-
mined by a MCT fit of the diffusion constant, i.e.,D/D0;(wc

2w)2g. The results arewc,3d558.7% andwc,2d580.3%.
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III. COOPERATIVE EFFECTS

Figure 3 suggests the fact that a liquid near its glass tr
sition possesses highly nontrivial dynamics~see also
@16,17#!. We recognize regions of totally different behavio
some of which show very crowded and uncooperative m
tions, while others seem to actas oneresulting in collective
flows. The mobility obviously varies between different are
which is commonly referred to asdynamic heterogeneity.
How can we quantify the degree of cooperativity in our sy
tem? It is possible to do this by comparing the fluctuation
a one-particle dynamic quantityXi with its many-particle
equivalent( iXi . For simplicity, let^Xi&50, which implies
^(Xi&50. We can think ofXi to be the displacement vecto
Xi5vi[r i(t1t8)2r i(t) or its relative lengthXi5dv i[v i

2^v i&, wherev i[uvi u. The direction of motionni[viv i
21 is

a sensible choice forXi , too. In the case where interpartic
correlations are lacking, the width of the distribution ofX
will be

VarF( Xi G5( Var@Xi #. ~4!

Correlations, however, will increase Var@(Xi # while anticor-
relations will do the opposite. From Fig. 3 it is reasonable
expectcorrelations, and we define

NX
coop[

Var@(Xi #

(Var@Xi #
511

(
iÞ j

^XiXj&

(^Xi
2&

. ~5!

If our expectation is right, thenNX
coop will be larger than one.

We now claim thatNX
coop measures the total reduction o

degrees of freedom caused by correlations. In the simple
of uncorrelated motion (^XiXj&50), we obtainNX

coop51,
whereas the other extreme of totally correlated motionXi

[Xj ) results inNX
coop5N. If, more generally we haveM

identical variablesXi in each ofL independent groups,N
5ML, we obtain

NX
coop511

1

(^Xi
2& (i 51

N

(
j 51

M21

^Xi
2&5M . ~6!

FIG. 3. Particle motionsr i(t150ta)2r i(t) during a time 50ta .
The density isw50.78 in a 2d system.
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These examples show thatNX
coop is indeed a reasonable qua

titative measure for the degree of cooperativity. In real li
correlations will not be perfect, i.e., 100%, and the
strengths and spatial extensions will vary throughout the s
tem. Hence, we should expectNX

coop to be an average o
effective reduction factor for the degrees of freedom.

It is important to note thatNX
coop5NX

coop(t) because the
dynamic quantitiesXi5Xi(t) are dependent on the tim
scale necessary for their definition. The calculation ofNX

coop

turns out to be quite inconvenient. From one configurati
we only get one data point for the term( iXi in the numera-
tor, i.e.,NX

coop is not self-averaging. Thus, the simulation ru
has to be very long to aquire enough points for the calcu
tion of the variance. A way around this obstacle is not to s
over the whole system, but only over local subsystems on
particles. This should improve statistics. In practice, a
given n, we randomly choose a central particle and add
closest (n21) neighbors using them as a subsystem. Rep
ing this procedure for a small number of other central p
ticles, we get some more subsystems of sizen.

Naturally, a too smalln will modify our results because
we throw away some longer-ranged correlations, which
be important. An illustration for that is given in Fig. 4, whe
Ndv

coop belonging toXi5dv i[v i2^v i& is plotted for different
n at densityw3d50.56. We clearly see that it is necessary
take as many asn.1000 particles because a major chan
can be found when decreasingn from there. Interestingly, we
obtained for a small system ofN51066,w3d50.56 only a
maximumNdv

coop of nine when usingn51066 for its calcula-
tion ~data not shown!. This is half of the value ofNdv

coop at
N516 307,n51000, thus proving large finite size effects
many-particle correlations for the small system. Being c
scious of this problem is especially important if one nee
trustable numerical values forNX

coop, e.g., for determining
the exponent of divergence when cooling toward the gl
transition, as is done in@9#. How is it possible thatNdv

coop

,20 in the casew3d50.56 although the finite-size effects o
a too small subsystemn can be sensed even up ton
51000? The reason is that particles are only partially co
lated, which will become clear in Sec. IV where we demo
strate the decay of correlations with interparticle distan
Additionally, regions of fast particles are extended, nonco
pact objects~Fig. 3!, so that we have to sum over larg
subsystems to include all their mobility correlations.

On the other hand, however, takingn as large as possibl

FIG. 4. Ndv
coop(t) at densityw3d50.56, for different numbersn of

particles that are summed over in( iXi . From bottom to top:n
520, 100, 500, 1000, 2000, and 4000. Time is normalized tota .
,
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is not always the best thing to do. We can see the reason
this as in the exampleX5v, taking n5N, i.e., all particles
of the system. Then, Var@(vi #50 because the simulatio
conserves the center of mass, which means it sets(vi to
zero. Fortunately, our systems are large enough, enablin
to choose an optimum value ofn just between these two siz
effects. For a more thorough discussion see Fig. 7 and
corresponding text.

A word about error bars. The statistical uncertainty
simulation results is a consequence of the limited lengthT of
the runs. If we assume the equivalence of ensemble and
average, a quantityA can be determined up to the accura
VarT@A#;T21, where the constant of proportionality is e
sentially the decay time of the autocorrelation functi
^A(t)A(0)&. We calculate VarT@A# by extrapolating its be-
havior forT8,T to T, i.e., the average over the whole sim
lation run. This is done forA[NX

coop(t), only for a few ex-
amples oft. The resulting errorsdNX

coop56(Var@NX
coop#)1/2

are given in the figure captions.
Figure 5 showsNX

coop5Ndv
coop for some densitiesw in two

and three dimensions. As a function of time,Ndv
coop starts at

short times with the value of one because the individ
Brownian motions in the microscopic regime are uncor
lated. This is a trivial statement, so we do not have to de
onstrate it for every density. For later times,Ndv

coop reaches a
maximum which strongly increases with density. The fo
lowing decay then takes some decades in time again. Bu
can be seen, a limiting value is hard to observe within sim
lation times.

Now, the behavior of 2d and 3d systems seems to be q
similar, although the maximum values ofNdv

coop are larger in
2d. A small difference is the shift of the 2d maxima towa
longer times. While in 3d they are found at approximate
2ta , we find them in the 2d case at around 4ta . This shift
can be observed in other dynamical quantities as well. T

FIG. 5. @2d# Ndv
coop(t) for n52000 atw2d50.73, 0.75, and 0.77

@3d# The same for the 3d case,w3d50.53 and 0.56. The statistica
error due to the finite simulation time isdNdv

coop(20ta)560.5 for
w3d50.56. Again, time normalization byta .
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simple reason lies in the different polydispersitiessP50.1 in
three andsP50.25 in two dimensions. In 2d, the sma
and—on average—fast particles causeF2(kmax,t) to decay
more quickly in the beginning, so we measure a system
cally smaller ta than in the 3d case. If we define
F2(kmax,ta)50.01 instead of requiringF2(kmax,ta)51/e,
this discrepancy would vanish.

It is important to compare these results withNX
coop deter-

mined by the dynamical quantitiesX5v or X5n as men-
tioned above. For the interpretation of values ofNX

coop, this is
essential, because different sensible quantitiesX should not
produce totally different values ofNX

coop. Figure 6 shows the
caseX5v for 2d and 3d, andX5n for 3d. First,Nv

coop and
Nn

coop clearly display their long-time limits, which are equ
and different from one. Second,Nn

coop still develops a maxi-
mum aroundt5ta , while Nv

coop is a monotonously increas
ing function. Table I summarizes the main results ab
NX

coop. We can compare the maximum values ofNX
coop for

equivalent densities~e.g., equivalent in the sense of equ

FIG. 6. @2d# Nv
coop(t) for n52000 atw2d50.73, 0.75, and 0.77

@3d# The same for the 3d case,w3d50.53 and 0.56,n52000 ~1!.
Additionally, we see Nn

coop(t) ~L!. The statistical error is
dNv

coop(10ta)560.5 at w3d50.56, anddNv
coop(50ta)561.3 at

w2d50.77, for example. Time is normalized byta .

TABLE I. The main results aboutNX
coop.

ln
D0

D Ndv,max
coop Nv,`

coop Nn,max
coop

w2d

0.73 2.76 9 8(10)

0.75 3.41 12 13(17)

0.77 4.51 23 28(35)

w3d

0.53 2.92 6.5 6(7) 8
0.56 4.53 17 14(16.5) 21
ti-

t

l

D/D0) and find a somewhat higher cooperativity in 2d. T
absolute values ofNX

coop for the differentX agree to a reason
able extent, so that we are indeed allowed to interpret th
in the sense of a reduction factor for the degrees of freed

Let us now turn to the limiting valueNv,`
coop. Although we

find a random diffusion for every particle on a time sca
t@ta as expressed by the diffusion laŵr 2(t)&;Dt, we
should generally not expectNX

coop to be one because the in
terparticle correlations from shorter times are still accoun
for in this quantity. This can clearly be seen in the followin
way: We decompose the displacementvi for t@ta into M
pieces, each of them corresponding to a time stepe5t/M ,
i.e.,

vi5 (
m51

M

Di
m , ~7!

for particle i. For simplicity, let us say that interparticle co
relations are negligible for different time intervals, i.e

^Di
mDj

m8&50 if mÞm8. In this case, we obtain

Nv
coop~ t !511

M(
i j

^Di
1Dj

1&

NM(
i

^~Di
1!2&

, ~8!

where we exploited time translational invariance, i.e., hav
an equilibrium liquid. This quantity, however, does not d
pend on timet5Me anymore, ife is fixed. We thus get an
idea how it is possible that correlations persist fort→`.

Finally, other choices ofXi are possible, e.g., more exot
quantities like

Xi5wi[H 1, slow
21, fast
0, otherwise,

~9!

where the exact definition offast and slow is of no impor-
tance as long as it is done in a sensible way. Such an ana
has been presented in@9# for a Lennard-Jones fluid using
‘‘dynamic susceptibility’’xss instead ofNX

coop. Its definition
is quite similar toNX

coop, measuring fluctuations of a many
particle, ‘‘macroscopic’’ dynamic quantityQss5(wi :

xss5
bV

N2 @^Qss
2 &2^Qss&

2#. ~10!

Unlike NX
coop, a quantitative interpretation of the value ofxss

is not obvious.
Let us return to the role of the sizen of the subsystems

that are used for the calculation ofNX
coop. As we stated

above, the subsystem should be large enough to include m
of the long-ranged correlations of its particles, i.e., to redu
surface effects. On the other hand,n5N leads toNv

coop50
because of the center-of-mass correlation~cmc!. It is evident
that our results will be influenced by the cmc even if we u
n,N, say n50.9N. Despite this fact, we need a cmc b
cause the motion of the whole simulation box leads to
physical results forNX

coop. Interestingly, the center of mas
~cm! performs a random walk with speed̂vcm

2 (t)&
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51/N2dD0t, independent of the packing fraction, which
the consequence ofactio5reactio in a stochastic sense
Now, the subtle point is that the cm motion consists of t
contributions, first the random displacementU of the simu-
lation box as a whole, which would vanish if we embedd
the simulation box in macroscopic system. Second, the
dom rearrangementswi of particles in our system that pro
duce a contribution to the cm motion even if we forbid
overall drift of the box. Obviously, we should keep the se
ond and discard the first contribution because the latter is
artifact of the limited system size. A cmc, however, w
remove both. In the following, we estimate the resulting
ror in the calculation ofNv

coop. The uncorrected displaceme
of particle i is vi5wi1U, so that the cm motion become
vcm51/N(k51

N wk1U, where the first term generally doe
not vanish. Calculating the numerator ofNv

coop in Eq. ~5!, we
obtain

(
i j 51

n

^~vi2vcm!~vj2vcm!&

5 (
i j 51

n S ^wiwj&1
1

N2 (
kl51

N

^wkwl&2
2

N (
k51

N

^wiwk& D
5 (

i j 51

n

^wiwj&S 12
n

ND , ~11!

where, in the final step, correlations between theN/n differ-
ent subsystems have been neglected. Thus,

Nv
coop5Nv,ren

coopS 12
n

ND ~12!

is the result, which is too small by a factor of„12(n/N)….
As is demonstrated in Fig. 7 for the value ofNv

coop(`), this
behavior can indeed be observed in our simulations.
renormalized value of cooperativity,Nv,ren

coop , comes out as a
fit parameter to the form of Eq.~12! ~see Table 1 in brack
ets!. Additionally, Fig. 7 tells us what choice ofn is advis-
able becausen/N has to be in a region where the above
works. If this is the case, the subsystem must have only s
remaining correlations with the otherN2n particles because

FIG. 7. The role of the subsystem sizen in the calculation of
Nv,`

coop ~1!, for the systemsw2d577% (N59201) andw3d555%
(N516 307). The solid lines are fits of the formNv,ren

coop
„1

2(n/N)…, where the parameterNv,ren
coop535 and 16.5, in the 2d and

3d case, respectively. Theh marks the choicen52000.
d
n-

-
n

-

e

all

increasingn only reducesNv
coop by the ‘‘trivial’’ factor of

(12n/N). The choicen52000 is marked byh in Fig. 7.
In our case, atw2d50.77, we observe a maximum redu

tion of the total degrees of freedom by a factor ofNv,ren
coop

535. This, however, is yet only a moderately high dens
(wc,2d'0.8), so we should expect large collective effects
the glass transition.

Finally we mention an interesting relation betweenNv,`
coop

and the Haven ratio, relating the ratio of the self-diffusi
constant and the conductivity in ionically conducting ma
rials. Its zero-frequency limitH(0) is given by

H~0!5

(
i

*0
`dt^vi~0!vi~ t !&

1

N (
i , j

*0
`dt^vi~0!vj~ t !&

. ~13!

Since for large times ^vi
2(t)&52dDt

52t*0
`dt^vi(0)vi(t)& and correspondingly ^vi(t)vj (t)&

52t*0
`dt^vi(0)vj (t)&, it is obvious that

Nv,`
coop5H~0!21. ~14!

Hence, as a side product we have obtained a quantita
interpretation of the inverse Haven ratio as the reduction
the effective degrees of freedom.

IV. SPATIAL CORRELATIONS

The snapshot of the dynamics in 2d~Fig. 3! demonstrates
that large spatial correlations are present in our systems
the following, we want to quantify them as a function of th
time scale of dynamics.

As in the treatment ofNX
coop, a dynamical variableXi

should be given for each particle, again with the restrict
^Xi&50. A spatial correlator can then be defined by

^X~0!X~R!&[K 1

N (
i j

XiXjd„R2~r i2r j !…L . ~15!

Again, Xi denotes a dynamical quantity connected to
motion of particlei during the time interval@ t0 ,t01t#. Be-
cause of symmetry reasons, the positionsr i5r i(t01t/2) are
used. Averaging over the solid angle ofR, i.e.,

^X~0!X~R!&[
1

4pR2 E dV^X~0!X~R!& ~16!

results in a loss of information because the direction of m
tion of particlei, for example, breaks the isotropy. Figure
explains this in a pictorial way: particles ‘‘in front of’’ or
‘‘behind’’ the central one have a very long-ranged dire
tional correlation, while perpendicular to the direction of m
tion, we observe a kind of backflow behavior which is we
known from @18#. How has this plot been produced? Firs
we calculate allXi5ni , i.e., the directions of displacemen
during a time interval@ t0 ;t01t#. We then choose particlei
and turn the whole~2d! system so thatXi8 points along the
positivex axis. Now, the directionsXj8 are added to the av
erage at the positionsr j8„t01(t/2)…. As result, we obtain the
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field ^X8(r 8)&, which for largeir 8i consists of very shor
vectors. Hence, for reasons of visualization, we plot thenor-
malizedversion of^X8(r 8)& in Fig. 8.

Being aware of the complicated behavior in Fig. 8, let
for the moment and for simplicity ignore the angle depe
dence, and treat correlations only as a function of interp
ticle distanceR. We define the dimensionless quantity

SX~R,t ![
^X~0!X~R!&

^X2~0!&
, ~17!

where again its dependence on time scalet should be kept in
mind, just as in the case ofNX

coop. Possible choices are:Xi

5dv i , Xi5vi , or Xi5ni , wherevi5r i(t)2r i(0), dv i5v i

2^v i&, andni5viv i
21 . The functionsSdv(R,t) andSn(R,t)

count correlations of both slow and fast particles beca
both sorts are weighted similarly. To be more precise,
slow particles are not suppressed as in the case ofSv(R,t).

FIG. 9. Spatial correlationSdv(R,t) at w2d573%.

FIG. 8. Correlations of the direction of displacementsXi5ni at
w577%; t510ta . The large arrow in the middle shows the dire
tion of motion of the reference particle.
s
-
r-

e
e

CalculatingSX(R,t), we encounter a problem that is re
lated to the system size. If we want the system’s cm to
constant, we have to correct the particles’ motions. But t
introduces an anticorrelation of two formerly uncorrelat
particles. As a consequence,SX(R,t) will approach a nega-
tive value for largeR, instead of zero. Without cm correc

FIG. 10. Spatial correlationSdv(R,t) at w2d577%.

FIG. 11. Spatial correlationSdv(R,t) at w3d556%.
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tion, we would measure a positive number in this limit b
cause the cm performs a slow diffusive motion~see Sec. III!.
For the present systems, these offsets were smaller
0.002, which is a small fraction of the amplitude of corre
tion. Hence, their subtraction fromSX(R,t) left the function
nearly unchanged.

Figures 9 and 10 showSdv(R,t) for the 2d systemsw2d
573% andw2d50.77. Obviously,Sdv(R,t) can be described
by an exponential

Sdv~R,t !'A~ t !expS 2
R

jdv~ t ! D ~18!

to a good approximation, ifR.5. It is important to note tha
the amplitudeA(t) is not necessarily equal to one as su
gested by the definition ofSX(R,t) for R→0. In other words,
the extrapolation of complicated interparticle correlations
the one-particle quantitySX(R50,t) would be unphysical.

We find large deviations from the exponential at distan
R,5. This can be understood qualitatively because cer
information about the local packing is available. For i
stance,R,1 can only occur for two very small particle

FIG. 12. Spatial correlationSn(R,t) at w2d577%.

TABLE II. The lengths of the simulation runs including th
number of particles.

w2d 0.73 0.75 0.77 0.78

#ta 2000 5000 5000 500
N 8756 8960 9201 9320

w3d 0.53 0.56

#ta 1500 750
N 15422 16307
-

an
-

-

o

s
in

~remember̂ Ri&51) which on average are much faster th
the others. Thus,̂dv(0)dv(R)& will be quite large. The os-
cillations for R,6 must have a similar reason, i.e., spec
local packings that are favorable or not for the value
^dv(0)dv(R)&. We can imagine that for largerR, the possi-
bilities of packing become so many that they averageSX(R)
to a structureless exponential. This is the case for the st
ture factorg(R), too.

Figure 11 showsSdv(R,t) for the 3d case. The situation i
quite the same as in 2d, except for the long-range osc
tions, especially ofSdv(R,t5ta). They too indicate the ex-
istence of structures that are favorable for dynamical co
lations. For 2d systems of smaller polydispersitysP510%,
which are not shown here, we find the same oscillations
this case, they could be proved to result from local crys
line order, which occurs, if—by coincidence—many pa
ticles of approximately the same size come together.
though the system is in an overall amorphous state, the s
polydispersity makes local crystallites more probable, th
creating regions of low mobility. The oscillations for thre
dimensions, however, are not understood yet.

FIG. 13. Spatial correlationSn(R;t) and Sv(R;t) at w3d

556%.
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In any event, we can extract fromSdv(R,t) the amplitude
A(t) and the correlation lengthjdy(t) as a function of the
dynamic time scalet. The simulation runs, by the way, hav
to be much longer than the maximum time scale shown
cause the functionsSdv(R,t) are quite demanding with re
spect to statistics. For instance, distant particles, which
uncorrelated, have to average^X(0)X(R)& to zero. The sta-
tistics M enters by a factor of 1/AM , so an improvement o
the result has a high price. Additionally, thedynamic hetero-
geneities, as visualized in Fig. 3, are very long lived@19#,
i.e., possess typical lifetimes of tens to hundreds ofta , de-
pendent onw. Thus, if we want to average over differe
dynamical situations, we need data for some hundreds ofta .
Table II shows the lengths of our simulation runs in units
ta for the analyzed 2d and 3d packing fractions, resp
tively, including the system sizeN.

Let us turn to another dynamical quantityXi5ni , the
direction of displacement. As we see in Fig. 12,Sn(R,t) is
quite similar toSdv(R,t), i.e., we find an overall exponentia
decay of correlations with distanceR. Its characteristic
length jn(t), however, is much larger than the previo
jdv(t). Again, the situation is quite the same in three dime
sions~Fig. 13!, i.e., jn exeedsjdv for w3d50.56. A remark-
able difference to the 2d case are the extreme oscillation
Sn(R,t) for t5(1/75)ta . This is not understood yet, bu
could be due to the lower polydispersity in the 3d syst
causing locally less amorphous packings. The vectorial c
relationSv(R,t) is also shown in Fig. 13, where it seems th
the amplitudeAv(t) is a constant for all time scalest.ta .

Figure 14 summarizes the data forjX(t), Xi5dv i . First

FIG. 14. @2d# The dynamical length scalesjdv(t) at packing
fractionsw2d573%, 75%, 77%, and 78%, from bottom to top~1!.
For comparison:jn(t) (h) and 1

2 Rcurl(t) (L) at w2d577%. @3d#
Again jdv(t) for the 3d densitiesw3d553% and 56%~1! andjn(t)
at w3d556% (h). Errors due to fitting are estimated to be less th
10%.
e-

re

f
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of
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of all, we notice an increase of correlation lengths with de
sity. For a 3d Lennard-Jones system@1# and polymers@2#,
this has already been demonstrated for the special choic
time scalet'ta . But for longer times, even larger correla
tion lengths can be observed as shown in the figure. Inter
ingly, jX(t) is a monotonously increasing function, with
limiting value jX(`)[ limt→` jX(t). For comparison, Fig.
14 shows the length scales for the directional correlat
jn(t) at w2d50.77 andw3d50.56.

Table III summarizes the data forjX(`), where the error
due to fitting the exponential is less than 10%.~The quantity
Rcurl will be explained below.! The statistical error due to
finite time averages is small enough to be included ther
As we see, the length scalejdv(`) takes a snuggish rise
growing from 4.1 to 7.15 betweenw2d50.73 and 0.77. In
contrast,jn and jv(`), starting from about the same initia
value, end up at a value of more than twicejdv(`). The
underlying physics of this very different behavior of mobili
and directional correlation is unclear. As in the case
NX

coop, the vectorial quantitiesni andvi show a very similar
behavior of their interparticle correlators.

So we can state that the overall cooperativity is det
mined by both its length scalejX(t) and its strength, or am
plitude A(t). Equations~5! and ~17! show that

NX
coop[11

(
iÞ j

^XiXj&

(^Xi
2&

5
1

(^Xi
2& (i j ^XiXj&

5
1

^X2~0!& E0

`

dR p~R!^X~0!X~R!&

5E
0

`

dR p~R!SX~R!, ~19!

wherep(R) is the average number of particles found at d
tanceR from a particle at the origin. In a way, this is a trivia
result because the sum over all spatial correlations shoul
the overall cooperativity. When the approximationSX(R)
'Ae2R/j is valid and at homogeneous density, we fi
NX

coop(t);jX(t)3A(t). The deviations from the exponentia
for small R can modify this argument but are unlikely t
totally change the picture.

TABLE III. The dynamical length scales in the limitt→`.

w3d 0.53 0.56

jdv(`) 2.2 2.8
jn(`) 2.3 4.5
jv(`) - 4.6

w2d 0.73 0.75 0.77 0.78

jdv(`) 4.1 5.2 6.0 7.2
jn(`) 3.7 5.4 11 16
jv(`) 4 - 10.5 16
Rcurl(`) 8 10 21 30
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Consequently, the results forNdv
coop(t) andjdv(t) are only

compatible, if the strength of correlationAdv(t) will tend to
zero for long times. We can observe the decrease ofAdv(t)
clearly in Fig. 9 (w50.73), but it is harder to see at high
densities because of the limited time window. ForXi5vi , in
contrast, we need a limiting value ofAv greater than zero, if
Sv(R,t) is to be compatible withNv

coop(t) for t→`. Figure
13 proves this to be the case becauseAv(t) is constant for
t.ta .

Let us finally return to the detailed picture of Fig. 8.
suggests that spatial correlationsalong the direction of mo-
tion will be very different from themperpendicularto it. We
can test this by restricting the summation in Eq.~15! to cer-
tain anglesc between the motion of particlei and the con-
nection vector r j2r i . For example, the conditionc
P@p/3,2p/3# chooses only particlesj that arecollateral to
particlei with respect to its motionvi . To selectin direction

of motion, we demandcP@0,p/20#ø@ 19
20 p,p#, for ex-

ample. The restricted sum is then carried out to obt
Sn

'(R,t) or Sn
i (R,t) ~see Fig. 15!. Because of the backflow

we expectSn
i (R,t) to become negative for largeR.20. This

can be observed in the figure. In contrast,Sn
i (R,t) ap-

proaches zero forR→`. We notice the difference of lengt
scalesjn

' and jn
i , which is summarized in Table IV. Th

estimated error of these length scales is less than 20%
the exact values are not of interest here. Instead, the no
of a very different behavior of particles parallel and perpe

FIG. 15. Spatial correlationSn(R,t) at w2d577%, t510ta and
w3d556%, t5ta , calculated dependent on the anglec5(vi ,r j

2r j ). Parallel ~i! meanscP@0,p/20#ø@
19
20 p,p#, perpendicular

~'! meanscP@p/3,2p/3#, and bulk stands forcP@0,p#. In the
perpendicular case,Sn(R,t) becomes zero atR'Rcurl and is nega-
tive for larger distances, so that it is necessary to plot its abso
value.
n

ut
on
-

dicular to the motion of the central one is justified for thre
as well as for two-dimensional systems.

The time dependencejX(t), if at first sight surprising, can
be understood quite pictorially. Without any further inform
tion, the probability for the motion of some tagged particli
is equal in every direction. However, if we know that, in th
meanwhile, one or more of its next neighbors perform so
specified displacements, this will influence the probability
movement of the tagged particle. More distant neighbors w
do this as well, but the information about their motions h
to be ‘‘submitted’’ to particlei via nearer neighbors. It is no
hard to imagine that the information spread can only ta
place with a finite velocity. Thus, short-time motions will b
accompanied by a reaction of a few neighbors, while lon
lasting displacements will involve many of them. The m
notonously growing length scale of dynamic correlations
the natural consequence.

In the limit t→`, we can argue as in the case ofNX
coop:

For long waiting times, the displacementsui5r i(t/2)
2r i(0) and wi5r i(t)2r i(t/2) become independent to
good approximation. Thus, correlations on time scalet can
be expressed throughui andwi , usingvi5ui1wi

^v~0!v~R!&'^u~0!u~R!&81^w~0!w~R!&9. ~20!

This results in

Sv~R,t !'
1

2
Sv8S R,

t

2D1
1

2
Sv9S R,

t

2D . ~21!

The primed and double primed versions ofSv(R,t), respec-
tively, denote measuring the distancesR at the end or at the
beginning of the time interval@0,t#. On the other hand
Sv(R,t) is defined by using the interparticle distanceR in the
middle of this interval. However, the definitionsSv(R,t),
Sv8(R,t), andSv9(R,t) produced the same results in our sim
lations, which is not shown here. Thus, in the long-tim
limit, the spatial correlations of the vectorial displaceme
Xi5vi become time-independent, i.e.,

Sv~R,t !'SvS R,
t

2D . ~22!

The phenomenon of a growing dynamical length scale
exhibited by much simpler systems, like a one-dimensio
~closed! chain of N diffusive particles which are connecte
by harmonic springs, as described by the Langevin equa

ẋn52k~2xn2xn212xn11!1hn , ~23!

where thehn are independent white noises. Let us assu
thatN is a large number, sayN.1000. The analytic solution
of this many-particle problem is possible with the help
discrete Fourier transform. This enables us to calculate
displacement–displacement correlation, but this is not sho

te

TABLE IV. The anisotropy of dynamical length scales.

w 0.56 0.77

jn
'(`) 2.7 7.5

jn
i (`) 4.4 15
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here. The result is that in this simple model, the length
correlation increases with time, too. In contrast to our sim
lations, jv(t) grows until it has reached the system siz
Mathematically, this is explained by the fact that relaxati
times are largest for the long-wavelength modes. Stated
ferently, apart from finite size effects the chain model p
sessesjv(`)5`. In turn, we suspect the reason for a fin
value ofjX(`) in our HS systems to be the following: ‘‘par
ticles simply can go out of each other’s way.’’

In other words, a particle that travels a long distance d
not have to pull the whole system with it because rearran
ments are possible by changing neighbors. On average,
results in the backflow behavior of Fig. 8. We are theref
tempted to relate the length scalesjX(`) to an inherent
length of the backflow pattern for long times. From Fig.
we see that the distanceRcurl(t) from the vortices to the
central particle is the only sensible choice. Table III sho
the limiting valuesRcurl(`) for the 2d systems under inves
tigation. Interestingly,Rcurl(`) is twice the correlation length
jv(`) or jn . For jdv(`), no such relation seems to exist.

V. DISCUSSION

We presented detailed information about displacem
correlations, which turned out to be of the same nature
two-dimensional disks and three-dimensional hard spher

Using the quantitiesXi5dv i , ni and vi as input for
NX

coop(t) and SX(R,t), we were able to measure the tot
reduction of degrees of freedom and the spatial exten
correlations, respectively. The data ofNX

coop is found to agree
for these three choices ofXi , supporting the notion of a
ze
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reduced dimensionality of motion in high-dimensional co
figuration space. The length scale of correlations, howe
turns out to increase much faster with density forXi5ni and
vi than forXi5dv i . An explanation for this is lacking at the
moment. Finally, we demonstrated, that for 2d as well as
3d systems, an angle-resolved calculation of correlation
appropriate, yielding much larger length scalesin the direc-
tion of motion thanperpendicularto it.

The important question arises how the dynamical len
scalesjX(`) are connected to static correlations. In oth
words, which local structural properties determine whethe
group of particles will be fast or slow? Naive attempts, u
ing, e.g., spatial density correlations, have not revealed
significant connection to dynamics. What makes things m
complicated isjX(t)’s dependence on the definition ofXi .
On the other hand,NX

coop(t) and SX(R;t) are strongly aver-
aged quantities, obtained by including many different d
namical situations. Thus, we should not expect to get v
specific information from them. A deeper understanding
cooperative effects will only become possible by a more
tailed, less averaged treatment. In any case, the relatio
structure to dynamics is the central problem to be solv
The present work may help to formulate the relevant qu
tions somewhat clearer.
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